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INTRODUCTION

The magnetopause is the outer boundary of the Earth's magnetosphere, the region

within which charged particle motion is dominated by the geomagnetic field. Adjoining

the magnetopause, on its Earthward side, is usually found a boundarylayer formed

by plasmas of intermediate densities and temperatures which constitutes a transition

layer from the shocked solar wind or magnetosheath plasmas to the field-dominated

plasmas of the outer magnetosphere. Since the first direct and unique measurements

of magnetospheric boundary layers (Rosenbauer et al., 1975; Eastman et al., 1976;

Paschmann et al., 1976), boundary layers have been found to be present in about 90%

of all magnetopause crossings.



Evidencefor the probable existence of magnetospheric boundary layers was first

presented by Hones et al. (1972) based on VELA satellite plasma observations

(no magnetic field measurements were obtained). This magnetotail boundary layer

is now known to be the tailward extension of the high-latitude boundary layer or

plasma mantle (first uniquely identified using HEOS 2 plasma and field observations

by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely

identified using IMP 6 plasma and field observations by Eastman et al., 1976). The

magnetospheric boundary layer is the region of magnetosheath-like plasma located

Earthward of, but generally contiguous with the magnetopause. This boundary layer

is typically identified by comparing low-energy (< 10 keV) ion spectra across the

magnetopause. Low-energy electron measurements are also useful for identifiying the

boundary layer because the shocked solar wind or magnetosheath has a characteristic

spectral signature for electrons as well. However, there are magnetopause crossings

where low-energy electrons might suggest a depletion layer outside the magnetopause

even though the traditional field-rotation signature indicates that this same region is

a boundary layer Earthward of the current layer (see Anderson et al., 1993). Our

analyses avoided crossings which exhibit such ambiguities.

Pristine magnetopause crossings are magnetopause crossings for which the current

layer is well defined and for which there is no adjoining magnetospheric boundary

layer as defined above. Although most magnetopause models to date apply to

such crossings, few comparisons between such theory and observations of pristine

magnetopause crossings have been made because most crossings have an associated

magnetospheric boundary layer which significantly affects the applicable boundary

conditions for the magnetopause current layer. Furthermore, almost no observational

studies of magnetopause microstructure have been done even though key theoretical

issues have been discussed for over two decades (Willis, 1971). This is because

plasma instruments deployed prior to the ISEE and AMPTE missions did not have the

required time resolution and most ISEE investigations to-date have focused on tests

of MI-ID plasma models, especially reconnection.

More recently, many phenomenological and theoretical models have been devel-

oped to explain the existence and characteristics of the magnetospheric boundary layers

with only limited success to date (see reviews by Lundin, 1988, and Eastman, 1990).

The cases with no boundary layer treated in this study provide a contrary set of con-

ditions to those observed with a boundary layer. For the measured parameters of such

cases, a successful boundary layer model should predict no plasma penetration across

the magnetopause. Thus, this research project provides the first direct observational

tests of magnetopause models using pristine magnetopause crossings and provides im-

portant new results on magnetopause microstructure and associated kinetic processes.

Research results are documented in the Summary and Conclusions section and,

most importantly, in research reports listed in the Grant Publications section below.



SPACECRAFT AND DATA SETS

The AMPTE/CCE spacecraft operated from launch on August 16, 1984 until early

1989. It was in a near equatorial orbit with an apogee of 8.8 R E and a 15.6 h period

(Figure 1). During disturbed interplanetary and geomagnetic conditions (Kp > 5), the

spacecraft sometimes traversed the frontside magnetopause region although always at

low latitude (< 15°). The spin axis of CCE points roughly sunward and its spin period

is about 6 s. A full complement of particle and fields instrumentation was flown

as documented by Bryant et al. (1985). The AMPTE/CCE observations presented

in this paper were obtained primarily by the Hot-Plasma Composition Experiment

(HPCE) (Shelley et al., 1985) and the Magnetic Field Experiment (MAG) (Potemra

et al., 1985). With this plasma instrument, two-dimensional measurements of electron

velocity distributions are made from 50 eV to 25 keV and, for ion distributions,

from near spacecraft potential to 17 keV/e. If the electron angular distributions are

assumed to be quasi-isotropic, nominal electron densities can be obtained every 155

ms. Such high time resolution data are used in this paper, limited primarily by easily

recognized spin modulation as well as by a 50 eV lower-energy cutoff. However,

we regard these nominal electron densities to be a proper proxy of total density

variations present near the magnetopause and it is that variation which is of most

importance for this paper. Simultaneous MAG measurements are provided every 115

ms which, together with the high time resolution electron data, provides a closely

matched set of plasma and field data for high time resolution studies. Higher-energy

particle measurements supporting this study were obtained with the Charge-Energy-

Mass (HEM) spectrometer (Gloeckler et al., 1985) and the Medium-Energy Particle

Analyzer (MEPA) (McEntire et al., 1985).

The ISEE-1 and -2 spacecraft operated from launch on October 22, 1977 until

reentry on September, 26, 1987. They flew together with controlled separation

distances in a highly eccentric orbit with an apogee of 22.5 RE and approximately

29 ° inclination. Plasma and field observations used for this paper were obtained by

the Fast Plasma Experiment (FPE) (Bame et al., 1978) and the Fluxgate Magnetometers

(Russell et al., 1978). With the plasma instrument, tw0-dimensional measurements of

ion and electron velocity distributions are made at 16 energies at each of 16 azimuths,

integrated over +550 of elevation angle relative to the ecliptic, in one satellite rotation

of 3 s. The measurement cycle is repeatecl every spin in high data rate and every

fourth spin in low data rate. The Fluxgate Magnetometers provide a field vector every

250 ms when in low data rate and 63 ms in high data rate; crossings plotted in this

paper are all high data rate.

AMPTE/CCE and ISEE 2 magnetopause crossings used in our study are listed in

the Appendix including crossing times and locations. For the CCE data set, all orbits

were examined from launch in August, 1984 through the end of mission in early

1989. However, for ISEE 2, only magnetopause crossings during the first 15 months



of operationwere evaluated from launch in October, 1977, through December, 1978.

The CCE spacecraft has a low inclination orbit which results in crossing latitudes that

are all less than 15 °. However, local time coverage by CCE is very limited for such

crossings and most occur near local noon because that is where a crossing within its

8.8 RE apogee is most likely. In contrast, the high-inclination orbit of ISEE 2 resulted

in magnetopause crossings ranging from 8° to 23 ° latitude for our study. Fortunately,

ISEE 2 coverage is excellent at all local times although crossings close to local noon

are typically more than 15" from the magnetic equator. Overall, the combined CCE

and ISEE 2 crossing sets provide excellent coverage of the magnetopause at relatively

low latitudes from local noon to beyond the dawn-dusk meridian. The magnetic field

data are all analyzed by a standard minimum variance analysis method developed by

Sonnerup and Cahill (1967) and Siscoe et al. (1968).

A search for no-boundary layer cases was also made in the AMPTE/IRM data set

but only one case was found (see section below on "Listings of No Boundary Layer

Cases"). IMP 6 and other earlier satellite data sets had plasma instruments with longer

cycle times which eliminate the possibility of examining no boundary layer cases with

any confidence. The present study pushes the sampling capabilities of AMPTE/CCE

to the limit (using non-spin averaged electron samples). Unfortunately, the HPCE ion

instrument had a long cycle time (three minutes) which only allowed rough estimates

of ion data on both sides of the magnetopause but provided no resolution of the density

gradient itself. Only instruments having cycle times of one second or less can begin to

resolve pristine magnetopause crossings; such instruments are just beginning to appear

with the ISTP program. Our research on pristine magnetopause crossings reveals

only very partially the richness and complexity of magnetopause microstructure and

kinetics.

PRISTINE MAGNETOPAUSE CROSSINGS

Our research focused primarily on the microstructure of pristine magnetopause

crossings based on high-resolution particle and field data obtained by the AMPTE/CCE

and ISEE 2 spacecraft. These crossings have no adjoining magnetospheric boundary

layer or, at most, a low-density plateau. Ten such CCE crossings were identified

and, due to the AMPTE orbit, they all occur at low latitude (< 15°). Crossings were

identified from near the dawn meridian to about 1300 hours local time. Although spin-

averaged plasma moments are sampled with 6-second resolution, non-spin averaged

electron spectra are sampled every 155 ms, thus enabling high-time-resolution studies

of magnetopause microstructure at scales comparable to the high-resolution magne-

tometer data which have a 115-ms sampling period. In some cases, the electron distri-

butions are approximately isotropic so that these non-spin-averaged moments closely

reflect true density variations. Although only one spacecraft is used, approximate

values of magnetopause thickness are obtained by using remote sensing information
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available in selected energetic ion channels. For the seven crossings analyzed in this

way, the magnetopause thickness is found to be approximately 1 to 3 ion gyroradii.

For several cases analyzed, the density gradient is found to be very sharp at times

with scale lengths down to only a few plasma skin depths. The primary density gra-

dient is also found to usually occur near the inner edge of the current layer, especially

for crossings near local noon. Low-frequency magnetic waves are observed from 0.5

to 1 Hz (roughly the ion cyclotron frequency). Close to the magnetopause, some

enhancements of broad-band electrostatic noise are observed as well (unfortunately,

the measurements are not very reliable as noted in the "Power Spectra and Ratios"

section below). These results indicate that low- and high-frequency plasma waves

are created in the presence of very steep plasma gradients within the magnetopause

current layer and that these waves can act back on the particle distributions to reduce

the steep gradients.

A classic example of a pristine magnetopause crossing is presented in Figure 2.

This CCE magnetopause crossing near the subsolar point shows a very clean field

rotation in the maximum field component, Bi, whereas the normal field component,

Bk, remains constant near zero. However, Bk is not sufficiently steady to specify its

type as an MHD discontinuity. Further, the intermediate field component, Bj, exhibits

a bimodal pattern which indicates the presence of a filamentary current structure within

the magnetopause. The magnetopause current layer is identified by the field rotation

interval from 82215 sec to 82222.5 sec within which the electron density remains at

magnetosheath levels. Plotted electron "densities" are only for electrons above 50

eV and are not spin averaged; nevertheless, spin modulation at the 6-sec spin period

is not noticeable. At the inner edge of the magnetopause, the density drops more

than three orders of magnitude in less than 0.8 see to magnetospheric levels based

on data samples taken every 155 ms. Farther earthward, there is no evidence for any

magnetosheath-like plasma indicating the presence of a boundary layer. The steep

density gradient observed has a scale length intermediate between electron scale and

one ion gyroradius (Eastman et al., 1994, 1995).

For all pristine magnetopause crossings observed in the subsolar region, we find

that the overall magnetopause remains well-defined by the shear in magnetic field but

that the primary density drop from magnetosheath to magnetospheric levels occurs on

the Earthward side of the current layer over a scale length that is often less than 20% of

the current layer width. Several additional examples of magnetopause microstructure

are shown in Figures 3 and 4 which contain detailed data for seven additional cases.

Some of the density plots show a spin-period variation because they are not spin-

averaged densities. In addition, these "densities" are only for electrons above 50 eV

and thus provide only a proxy for total density. However, they still show clearly the-

substructure of the magnetopause that is the focus of our study. In every case, the

primary density gradient is located on the Earthward side of the overall magnetopause



andthedensitygradientscalelengthis systematicallylessthanthecurrentscalelength.

Some cases (e.g., 335/84) show a clear low-density plateau which could be interpreted

as an incipient boundary layer. However, these are of sufficiently low density so

that each case is still appropriately treated as a no-boundary layer case with fairly

clean separation of the current layer itself. Observed density gradients range between

electron scale (-1 km plasma skin depth) and ion Larmor radii (10 to 50 km for the

CCE cases). Table 1 lists basic data for the AMPTE/CCE crossings including time,

magnetic local time, radial distance, scale length of the current layer (L) in units

of ion gyroradii (Rg), local electron anisotropy, and the time interval of any low-

density plateau or "brief quasi-boundary layer." No other local parameter was found

to correlate with the sense of electron anisotropy which is probably driven by both

local and non-local conditions.

LOCAL TIME DEPENDENCE

The local time distribution of ISEE 2 pristine magnetopause crossings is shown in

Figure 5. Only ISEE data are used for this purpose because that spacecraft provides

the most uniform local time coverage. Pristine magnetopause crossings are observed

at all local times and constitute between 3% to 23% of total crossings observed within

different local time sectors. In support of these ISEE results, pristine magnetopause

crossings are observed by CCE at all local times at which the spacecraft crossed the

magnetopause, from 8 to 13 hours MLT. For the ISEE 2 results, occurrence ratios peak

near 9 and 17 hours MLT and have a minimum near 13 hours MLT. Statistics are best

on the frontside from 8 to 18 hours MLT and, within this region, the likelihood of

pristine magnetopause crossings is lowest near noon or slightly post noon. On average,

over the frontside magnetosphere, pristine magnetopause crossings occur for 10% of

all crossings. For 75% of magnetopause crossings when the average magnetosheath

field is well defined, 60 percent are associated with -Bz in the nearby magnetosheath,

whereas only 15% are associated with +Bz. Most importantly, pristine magnetopause

crossings occur at all local times and are not limited to the subsolar region (Eastman

et al., 1994).

We have compared magnetic field and density and have found a systematic

difference in magnetopause microstructure with local time. This local time dependence

is illustrated in Figure 6 which shows log-scale densities and magnetic field profiles

in linear scale for eight sample magnetopause crossings displayed sequentially in

magnetic local time. These plots have been scaled to a constant width for the

magnetopause to aid in comparing profiles of density and magnetic field. The

magnetopause-has been identified in each case (and marked with vertical lines) based

on all three field components although only the maximum variance component is

plotted here. A time interval of 10 seconds is shown below each plot for comparison.



As confirmed by inspection of Figures 3, 4, and 6, density-gradient scale lengths

are often comparable to and rarely less than 1/2 of the current-layer scale length for

magnetopause crossings more than 1-2 hours local time away from noon. However,

most crossings within one hour local time of the subsolar point exhibit a density-

gradient scale length less than 20% of the current-layer scale length. For the first

three cases, all near local noon, the density gradient scale length is much shorter than

the magnetopause interval whereas these scale lengths are comparable for the last

three cases far from local noon. The CCE and ISEE cases in between at 10.1 and 9.1

MLT are intermediate in this scale length comparison. Thus, magnetopause has a clear

local-time dependence in gradient and current-layer scale lengths which represents an

important new test of magnetopause models (Eastman et al., 1995).

Fine structure in the magnetic field profile is often present as well. This is

especially dramatic in the CCE magnetopause crossing of day 320 of 1984 where

several sharp gradients occur within the overall current layer transition. In this case

only, the intermediate variance component is used in Figure 6 because it shows the

overall current layer more clearly than the maximum variance component. The day

343/77 crossing of ISEE 2 has high-speed plasma flow (not shown) near the inner

portion of the current layer. This location for the high-speed flow is the same as that

reported for accelerated plasma flows in Gosling et al. (1986). Such accelerated flows

are often confined to the current layer consistent with recent hybrid simulations of a

reconnection layer along the flank magnetopause (Lin and Lee, 1994). The other two

high-data rate ISEE 2 crossings do not have this high-speed flow signature.

ION COMPOSITION AND PRESSURE BALANCE

Most measurements of the magnetopause region are made only with electron and

proton measurements. However, recent ion composition measurements have revealed

many important results including the first direct evidence for the overlap of solar

wind and ionospheric ions within the boundary layer (Eastman et al., 1990, 1991).

Extending the application of such ion composition measurements, we evaluated all

plasma and field components of the total pressure across the magnetopause for the six

AMPTE/CCE crossings having a full set of plasma and field parameters including

electrons, energetic ions and composition. "Hot" electrons are defined as those

summed by the electron instrument from 50 eV to 25 keV and "cold" electron densities

are obtained by assuming a quasi-neutral plasma and subtracting the hot electron

densities from observed ion densities. Nominal cold electron temperatures of 10 eV

and 30 eV were assumed for the magnetosheath and magnetosphere, respectively. All

particle data below 17 keV are derived from the HPCE instrument; all data above

17 keV are obtained from the CHEM instrument. Summing all pressure components

in Table 2 leads to an average change of less than 14% in total pressure across the

magnetopause which is within experimental errors (Eastman et al., 1995).



Previousestimatesof total pressurenear the magnetopausehaveoften failed to
yield balanceacrossthemagnetopausealthough,duringanyarbitrarycrossing,oneis
not likely to observea brief interval of dynamic imbalance.Theseearlier estimates
were often basedon only integratingthe magnetic field and low-energyhydrogen
componentswhich usually dominatetotal pressure. However,Table 2 showsthat
electrons,He++andevenfield stresscanbe importantin providing detailedbalance.
In most cases,energeticions (>17keV) haveverysmall pressurecontributionsexcept
for protonson the magnetosphericsidein threecases.We found that finite pressure
from field stress,BAB, washighin two crossings(320/84and335/84)for which it was
an importantpartof total pressurebalance.This demonstratesthatvariationsalong the
magnetopauseboundarycanbevery largeat timeswhich underminesthe application
of tangentialstressbalanceandminimumvariancecalculationswhich assumenosuch
variation.

Percentagecontributionsto total pressureareshownTable3 for both the magne-
tosheathandmagnetosphericsideof themagnetopause,basedon an averageover the
six crossingsusedfor Table2. The combinedhot and cold electroncomponentscan
approach10% of the total pressurein the magnetosheath.Ion speciesother thanhy-
drogencan contributean additional13%on the magnetosphericside (primarily from
high-energyH÷) and 10% on the magnetosheathside (primarily from He+*). Thus,
electrondataand full-energycompositionmeasurementsareneededto fully evaluate
pressurebalanceat the magnetopause.

MINIMUM VARIANCE CALCULATIONS

Minimum variance calculations were run in detail on all AMPTE/CCE magne-

topause crossings without a boundary layer. The results are summarized in Table 4.

The minimum variance technique of Sonnerup assumes a finite normal component for

the magnetic field at the magnetopause whereas the Siscoe technique assumes a zero

normal component. A variety of nested time intervals were calculated using both tech-

niques to determine solutions with good confidence levels and the highest ratio of the

maximum to minimum component, Most calculations are compatible with a tangential

discontinuity (zero normal component) with three cases potentially consistent with a

rotational discontinuity (finite normal component).

The minimum variance calculations usually had high rms errors in the normal

component even when good max/min ratios were achieved. If the crossings occurred

near the diffusion region for reconnection (which we suspect in several cases), the

minimum variance calculation could show a zero normal component even in the

presence of reconnection (which should always be associated with a finite normal

component away from the diffusion region). Thus, minimum variance analysis

does not provide a clear test of tangential discontinuity vs. rotation discontinuity

and reconnection geometry in these cases. Combined with the uncertainty in the
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calculations and the observed magnetopause microstructure (imbedded filamentary

currents, etc.), it was decided not to include these results in any of the published reports.

As noted above in the section on pressure balance, field stress can sometimes be large

which indicates significant variation along the boundary. Such variations undercut the

basic assumptions of minimum variance calculations. Such calculations also assume

that the boundary is effectively stationary during the entire time of measurement. Our

measurements of imbedded filamentary structures in the magnetopause at high-time

resolution suggest that the magnetopause is rarely stationary and that the minimum

variance procedure should only be used as a rough guideline and not a definitive

measure of magnetopause type or structure. This qualification is especially important

near local noon where we observed very sharp density gradients at scale lengths

between electron scale and ion Larmor radii. Under such conditions, the magnetopause

is probably never stationary and kinetic instabilities are likely to be important yet

highly variable.

Key References on Minimum Variance Techniques:

Lepping and Behannon on Minimum Variance Errors (JGR 85, 4695, 1980)

Siscoe et al. on Siscoe technique (JGR 73, 61, 1968)

Siscoe and Suey, on Significance criteria (JGR 77, 1321, 1972)

Sibeck et al., on Significance tests (JGR, 90, 4013, 1985)

Sonnerup and Cahill, on Sonnerup technique (JGR 73, 1757, 1968)

Sonnerup and Cahill, on Sonnerup technique (JGR 72, 171, 1967)

POWER SPECTRA AND RATIOS

Using the AMPTE/CCE MAG instrument, we examined the magnetic field power

spectra at high resolution (analysis routines courtesy of Dr. B. Anderson, JHU/APL).

Power spectra for data intervals in the magnetosheath (Sh) and magnetosphere (Sp)

adjoining the CCE magnetopause cases are shown in Figure 7. The intermediate 032)

and minimum variance 033) field components were used. Both B3 and the B2/B3 ratio

showed a distinct power spectra peak near the magnetopause at about 0.4 to 1 Hz.

Data from the plasma wave instrument (PWE) on CCE were also evaluated and

plotted (see Figure 8). These showed magnetic enhancements in the 1-2 Hz range,

effectively consistent with the MAG measurements since this was PWE's lowest

channel. Some promising electric field enhancements were found in the PWE 100

Hz channel local to the magnetopause and associated with high density gradients. _

However, the PWE data were not used for publication because of problems in data

quality (high noise and possible contamination).



ENERGETIC PARTICLE MEASUREMENTS

Energetic particle measurements from both the AMPTE/CCE MEPA and CHEM

instruments were used for flux estimates. Figure 9 illustrates how clearly the basic

boundaries appear when sampling ion composition. Although the instrument cycle

time for composition is too slow for detailed magnetopause analysis, the larger

context for the boundary crossings is clear. Ionospheric ions dominate within the

magnetosphere and solar wind ions dominate outside of it. In the presence of a

boundary layer (absent in this case), these ion species always overlap (Eastman et al.,

1990). It is common to observe some leakage of ionospheric ions into the nearby

magnetosheath (see prior to 0550 UT in the Figure). However, transport inward

across both the magnetopause and boundary layer is essentially not observed except

for occasional "Mixed Region" conditions (Eastman and Christon, 1995).

The CCE MEPA instrument was used for studies of angular distributions and

the sounding of boundaries. Angular distributions of energetic particle flux near the

magnetopause were evaluated to check for any systematic dependence on IMF Bz

or any other plasma or field parameters. No such systematic dependence was found.

All CCE crossings analyzed showed enhanced energetic particle fluxes, presumably of

magnetospheric origin, in the magnetosheath near the magnetopause. Thus, presence

or absence of a locally-observed boundary layer is not correlated with the presence or

absence of energetic particle leakage into the nearby magnetosheath. Some minor

leakage at all times could be associated with finite ion gyroradius effects at the

boundary.

The energetic particle sounding method was applied to the five AMPTE/CCE

magnetopause crossings for which all required data was available. The inferred

magnetopause thickness in units of plasma ion gyroradii ranged from 1.4 to 3.4 (Table

1). The CCE crossings analyzed in this paper are all cases of high plasma beta in

the nearby magnetosheath. In a recent survey using ISEE data, Le and Russell (1994)

found that magnetopause thickness is smaller for such high beta conditions. They

report magnetopause thicknesses of 2-4 ion gyroradii, essentially the same result as

derived for the CCE cases.
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SUMMARY AND CONCLUSIONS

Magnetopause crossings without any substantial boundary layer are found to

occur at all local times and such crossings constitute about 10% of all magnetopause

crossings sampled by the CCE and ISEE 2 satellite. The overall magnetopause remains

well-defined by the shear in magnetic field. When the average magnetosheath field is

well defined, 60% of such pristine magnetopause crossings are associated with -Bz in

the nearby magnetosheath whereas only 15% of such crossings are associated with +Bz.

Analysis of high-resolution density and magnetic field profiles for various magne-

topause crossings reveals important fine structure. The density-gradient scale length is

often comparable to and rarely less than 1/2 of the current-layer scale length for mag-

netopause crossings more than 1-2 hours local time away from noon. However, most

crossings within one hour local time of the subsolar point exhibit a density-gradient

scale length less than 20% of the current-layer scale length.

Energetic ions can be used to scale distances by remotely sensing the magnetopause

with their large orbits of gyration. Using this method, the density-gradient scale lengths

were often observed to be significantly shorter than one ion gyroradius and sometimes

close to the electron skin depth. Magnetopause crossings often exhibit fine structure

and gradients on scale lengths much smaller than the scale length of the current layer,

especially for crossings near local noon. Earthward of the current layer, in 7 out of

the 10 CCE satellite crossings analyzed, a brief low-density plateau is observed and

these plateaus all have sharp gradients and small-scale structure. These low-density

structures are not substantial boundary layers and represent, at most, the incipient

formation of boundary layer plasma earthward of the current layer.

Detailed sums of all plasma and field pressure components were calculated for

six of the AMPTE/CCE crossings and the total pressure change observed across the

magnetopause is less than 14% on average, which is within experimental errors.

Pressure balance calculations to date have usually been based on only integrating

the magnetic field and low-energy hydrogen components. Our results indicate that

such calculations can be low by 10% or more due to contributions by electrons or

ions other than low-energy protons. Thus, electron data and full-energy composition

measurements may be necessary for some crossings when evaluating pressure balance

at the magnetopause.

Various processes for solar wind penetration of the magnetopause have been pro-

posed to explain the boundary layer usually observed Earthward of the magnetopause

(Lundin, 1988) and such penetration has been unambiguously demonstrated using ion

composition measurements (Eastman et al., 1990). Reconnection is normally the can-

didate of choice. Lin and Lee (1994) used hybrid simulations to determine properties

of the reconnection layer in the presence of shear flow. For all of the AMPTE/CCE

cases, magnetosheath flow speeds are small compared to the difference in Alfv6n

11



speedacrossthe magnetopause.Under this condition, the rotationaldiscontinuity is
on magnetosheathside of the reconnectionlayer. Thus, our magnetopausecross-
ingswithout a boundarylayer clearlyhaveno reconnectionlayerlocal to thesatellite
crossing location. Impulsive plasmapenetrationthrough a tangentialdiscontinuity
can result in boundarylayer plasmaundercertainconditionsasshownby Savoini et
al. (1994) basedon two-dimensionalhybrid simulations. Plasmainteractionswith
lower hybrid wavesnearthemagnetopausecan leadto localizedfield structuresand
enhanceddiffusion ratesthroughturbulence(Shapiroet al., 1994). In eachcase,the
no-boundarylayer casestreatedin this paperrepresentconditionsunderwhich these
processesshouldnot producea boundarylayer.

Neither a reconnectionlayer or anyother type of boundarylayer is observedin
our magnetopausecrossingsexcept for the very thin and highly structuredplateau
signatureswhich we do not consideras normal boundarylayers and, at most, are
signsof the incipientformationof aboundarylayer. Whateverproducestheboundary
layer must be at leastlocally absent.Onepossibility is that reconnectionis locally
presentbut that the reconnectionlayer is not which canonly happenif the satellite is
crossingdirectly throughthediffusionregion.Giventhatonly 10%of all crossingsare
without a boundarylayer(Eastmanet al., 1994),it maybe possiblethat a significant
fraction of suchcasesaredirect crossingsof diffusion regions.

Early modelingdonefor this researchprojectused1-D hybridsimulations(Cargill
and Eastman,1991). Comparingobservationswith thesesimulation resultsdemon-
stratedthat the magnetopausecannotbe adequatelymodeledwith any simulation
approachless than two dimensional.In contrast,simulationsby Prof. JamesDrake
and colleaguesof theUniversity of Maryland, inspiredby this researchgranton no-
boundarylayer observations,havemadesignificantprogresswith state-of-the-art3-D
simulations.Both thefinestructurethatwe observeandthepossibilityof direct cross-
ing of diffusion regionsaresuggestedby their 3-D simulationsof the current layer
and associatedturbulenceby Drake et al. (1994a).More recently,thesesimulations
haveincorporatedfull electromagneticeffects(Drakeet al., 1994b,1995). They find
current convective instability to be the dominantprocessfor current transport near
the magnetopause.Whistler wavesaredrivenunstableby the currentgradientat the
magnetopausewhich maintainsan overallwidth comparableto or larger thanan ion
gyroradius.Thecollisionlessplasmacurrentlayersarenot simplelaminarstructuresin
the 3-D simulations.Instead,they breaakupinto filamentsof electronstreamswith a
characteristictransversewidth roughlyequalto theelectronplasmaskin depth.Drake
et al. (1994a,b)suggeststhat thesenarrowcurrentlayersbecometurbulentand fila-
mentary. Imbeddedfilamentarycurrentstructureswithin the magnetopausearecom-
m-onin our AMPTE/CCEno-boundarylayercrossingsbasedon the commonbimodal
signatureobservedin the intermediatemagneticfield valuesderivedfrom a minimum
varianceanalysis.In somecases,suchfilamentarycurrentsmay offset the prevailing
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turbulence by linking up to produce flux transfer events (FIEs) that directly connect

the geomagnetic and interplanetary fields, leading to macroscopic changes near the

boundary and contributing to formation of the magnetospheric boundary layer (Lee,

1991). The enhanced presence of magnetopause microstructure with -Bz is also con-

sistent with this model for collisionless reconnection at the magnetopause.

Extremely sharp density gradient and filamentary current structures are observed

at scale lengths less than ion gyradii and down to electron scale lengths as predicted

in the Drake et al. model. This feature becomes most clearly resolved by analyzing

magnetopause crossings without a boundary layer because then the short density-

gradient scale length can be easily compared to the overall magnetopause current layer

width. The associated spectrum of electromagnetic waves predicted by the current

convective instability is broadband and extends from the ion cyclotron frequency up

to the electron cyclotron frequency. Such a spectrum is commonly observed at the

magnetopause as reviewed in detail by Thome and Tsurutani (1991). Thus, this model

for the current convective instability compares favorably with our high-resolution

observations of magnetopause microstructure near the subsolar region. As plasma

convects around towards the flanks, the source of free energy goes away as gradients

in current and density are reduced, instabilities are turned off, and the plasma relaxes to

a state of comparable scale lengths for density and current gradients in no-boundary

layer crossings, as observed.
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LISTINGS OF NO BOUNDARY LAYER CASES

The AMPTE/CCE data were analyzed in the ten available no-boundary layer cases

to the limits of the available data. ISEE 2 data were used primarily for survey purposes

and to evaluate local time dependence of magnetopause microstructure. Only five ISEE

2 magnetopause crossings were found in high-data rate that also had no boundary layer.

Dec. 9 (day 343) 1977, 0502:09 to 0503:17 UT

Dec. 13 (day 347) 1977, 2133:38 to 2134:38 UT

May 31 (day 151) 1978, 1145 to 1150 LIT (Gosling et al., 1986; Fig. 3, 4, and 16)

June 10 (day 161) 1978, 1357:30 to 1400:30 LIT (Gosling et al., 1986; Fig. 6,

7, and 12)

June 30 (day 181) 1978, 0036:39 to 0037:30 UT

All crossing days showing a no-boundary layer crossing with AMPTE/CCE were

also checked with the complementary AMPTE/U'KS spacecraft. In only one case, a

no-boundary layer crossing was identified by the UKS satellite.

Aug. 28 (day 241) 1984, 1304 UT (published in Hall et al., 1991)

AMPTE/CCE Magnetopause Crossings

DATE DOY UT r(R ) °LAT MLT L/Rg

10-6-84 280 0148 7.7 -10.2 11.2

10-19-84 293 0636 8.8 -11.5 11.9 1.6

11-13-84 318 1613 8.8 7.6 10.0 2.2

11-14-84 319 2355 8.8 -11.1 10.1

11-15-84 320 1900 7.8 3.7 11.2

11-30-84 335 0524 6.3 -15.4 11.5 3.4

12-26-84 361 0303 8.8 -13.6 8.1 1.5

2-8-86 039 2250 5.2 6.5 12.9

2-14-86 045 1530 8.6 13.3 10.8

4-14-87 104 1334 8.8 3.4 12.6 1.4

Note: L/Rg is the magnetopause thickness in units of ion gyradii.
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DATE DOY

ISEE 2 Magnetopause Crossings

UT r (R) °LAT MLT

11-15-77

12-9-77

12-11-77

12-13-77

12-25-77

12-30-77

1-4-78

2-15-78

5-31-78

6-10-78

6-30-78

6-30-78

8-8-78

8-14-78

8-19-78

8-24.78

8-21-78

8.31-78

9-3-78

11-15-78

12-17-78

319

343

345

347

359

364

004

046

151

161

181

181

220

226

231

236

233

243

246

319

351

0614, 12 23 10.4
0627

0503 11 22 9.1

1435 11 22 8.9

2134,

2151 13 22 8.5

2232 11 21 8.0

1322 14 22 7.2

1312 9 18 7.9

0834 21 22 _ 3

0630 20 21 19.3

1358 21 18 19.7

0037 18 15 19.0

1927 10 23 15.9

0243 13 23 14.0

1542 14 10 16.7

1038 14 10 16.7

0633,0635 12 8 16.3
0639,0641

2109 12 8 16.4

1017 13 8 15.7

0708 11 23 12.0

2108 12 4 10.8

1302 13 22 5.3
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Table3. PercentageContributionstoAveragePressure

B H hot e cold • He++ He+ O+
H+ O+ He++ He+

(>17 keV) (>17 keV) (>17 keV) (>17 keV_

MAGNETOSHEATH

19 61 7.4 1.9 8 0.07 0.06 1.3 0.16 0.42

MAGNE-'rosPHE, RE

78 9 1 0.06 0.7 0.19 0.66 9 0.91 0.51

0.05

0.002

Table 4. AMPTE/CCE Minimum Variance Calculations

DATE DOY Magnetopause AdAm Bn trBn Type*

10-6-84 280 0148:15-45 21 1.3 3 TD

10-19-84 293 0634:55-0636:10 17 2.0 13 TD

11-13-84 318 1613:21-40 7 -2.1 8 TD

11-14-84 319 2355:28-42 12 1.9 2.4 TD

11-15-84 320 1900:11-17 4.7 92 51 RD?

11-30-84 335 0524:32-44 28 -0.1 14 TD

12-26-84 361 0302:52-0303:06 22 40 48 RD?

2-8-86 039 2250:10-30 10 4.7 47 TD?

2-14-86 045 1530:00-50 27 28 21 RD

4-14-87 104 1334:22-35 14 -10 4 RD

*TD or RD type denotes probable tangential vs. rotational discontinuity

M/Am, ratio of maximum to intermediate eigenvalues derived from the minimum

variance calculation.

Bn, °'Bn - normal-component for B and the one-o" rms error
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THE EARTH'S MAGNETOSPHERE

SOLAR
WIND

PLASMASPHERE
LOBE REGION

PLASMA SHEET

CURRENT SHEET

PLASMAPAUSE PLASMA SHEET
BOUNDARY LAYER

BOW SHOCK
MAGNETOPAUSE MAGNETOSPHERIC

BOUNDARY LAYER

Figure 1. The AMFTFJCCE orbit is illustrated here with a noon-midnight meridian
cross section of the mag netosphere. Major plasma domains and boundaries are

identified. As the magnetopause moves with changing solar wind conditions, CCE

can sample the magnetopause near its 8.8 RE apogee.
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Figure _. Electron density and magn.etic field vs. time for the AMYFE/CCE

magnetopause crossing of 8 February 1986 (day 039); mean of minimum
component B k is 4.77 with 45'7 standard deviation.
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Figure 6. Local time dependence of magnetopause microstructure is illustrated by

these eight CCE and ISEE 2 crossings at locations near noon to the dawn-dusk

meridian. The magnetopause width is adjusted to be the same on each plot for

easy comparison of the basic density (n) vs. field 03) structure (vertical scales are

relative and a lO--sec baseline is given for each crossing).
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Figure 8. Observations from the CCE plasma wave experiment (PWE) are shown

(courtesy of Dr. Robert Strangeway, UCLA). Electric (6E) and magnetic (6B)

fluctuation levels are plotted for the 100 I--I.zelectric and 1-2 H.z magnetic channels.
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Figure 9. Fluxes for various ion species are plotted here for one CCE crossings based

on the Charge-Energy-Mass (CHEM') experiment. Both the magnetopause and bow

shock are marked along with basic ion "tracers;" note the "leakage" of ionospheric

ions into the nearby magnetosheath.
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